1932

Abstract

With the evolution of social media, cyberspace has become the default medium for social media users to communicate, especially during high-impact events such as pandemics, natural disasters, terrorist attacks, and periods of political unrest. However, during such events, misinformation can spread rapidly on social media, affecting decision-making and creating social unrest. Identifying and curtailing the spread of misinformation during high-impact events are significant data challenges given the scarcity and variety of the data, the speed by which misinformation can propagate, and the fairness aspects associated with this societal problem. Recent statistical machine learning advances have shown promise for misinformation detection; however, key limitations still make this a significant challenge. These limitations relate to using representative and bias-free multimodal data and to the explainability, fairness, and reliable performance of a system that detects misinformation. In this article, we critically discuss the current state-of-the-art approaches that attempt to respond to these complex requirements and present major unsolved issues; future research directions; and the synergies among statistics, data science, and other sciences for detecting misinformation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-040622-033806
2024-04-22
2024-05-11
Loading full text...

Full text loading...

/deliver/fulltext/statistics/11/1/annurev-statistics-040622-033806.html?itemId=/content/journals/10.1146/annurev-statistics-040622-033806&mimeType=html&fmt=ahah

Literature Cited

  1. Abdali S. 2022.. Multi-modal misinformation detection: approaches, challenges and opportunities. . arXiv:2203.13883 [cs.LG]
  2. Abdali S, Shah N, Papalexakis EE. 2020.. Hijod: Semi-supervised multi-aspect detection of misinformation using hierarchical joint decomposition. . arXiv:2005.04310 [cs.SI]
  3. Abdullah-Al-Kafi M, Tasnova IJ, Wadud Islam M, Banshal SK. 2022.. Performances of different approaches for fake news classification: an analytical study. . In Advanced Network Technologies and Intelligent Computing, ed. I Woungang, SK Dhurandher, KK Pattanaik, A Verma, P Verma , pp. 70014 Cham, Switz:.: Springer
    [Google Scholar]
  4. Agarwal A, Meel P. 2021.. Stacked Bi-LSTM with attention and contextual BERT embeddings for fake news analysis. . In 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS) 1, pp. 23337 Piscataway, NJ:: IEEE
    [Google Scholar]
  5. Agrawal T, Gupta R, Narayanan S. 2017.. Multimodal detection of fake social media use through a fusion of classification and pairwise ranking systems. . In 2017 25th European Signal Processing Conference (EUSIPCO), pp. 104549 Piscataway, NJ:: IEEE
    [Google Scholar]
  6. Alam F, Cresci S, Chakraborty T, Silvestri F, Dimitrov D, et al. 2021.. A survey on multimodal disinformation detection. . arXiv:2103.12541 [cs.MM]
  7. Amador J, Oehmichen A, Molina-Solana M. 2017.. Characterizing political fake news in Twitter by its meta-data. . arXiv:1712.05999 [cs.CL]
  8. Anusha G, Praveen G, Mounika D, Krishna US, Cristin R. 2022.. Detection of fake news using recurrent neural network. . In 2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE), pp. 15 Piscataway, NJ:: IEEE
    [Google Scholar]
  9. Atrey PK, Hossain MA, El Saddik A, Kankanhalli MS. 2010.. Multimodal fusion for multimedia analysis: a survey. . Multimedia Syst. 16::34579
    [Crossref] [Google Scholar]
  10. Azri A, Favre C, Harbi N, Darmont J, Noûs C. 2021.. Calling to CNN-LSTM for rumor detection: a deep multi-channel model for message veracity classification in microblogs. . In Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track, ed. Y Dong, N Kourtellis, B Hammer, JA Lozano , pp. 497513 Cham, Switz.:: Springer
    [Google Scholar]
  11. Baltrušaitis T, Ahuja C, Morency LP. 2018.. Multimodal machine learning: a survey and taxonomy. . IEEE Trans. Pattern Anal. Mach. Intell. 41:(2):42343
    [Crossref] [Google Scholar]
  12. Bhatt G, Sharma A, Sharma S, Nagpal A, Raman B, Mittal A. 2018.. Combining neural, statistical and external features for fake news stance identification. . In WWW '18: Companion Proceedings of the Web Conference 2018, pp. 135357 Geneva:: Int. World Wide Web Conf. Steer. Comm.
    [Google Scholar]
  13. Boukouvalas Z, Mallinson C, Crothers E, Japkowicz N, Piplai A, et al. 2020.. Independent component analysis for trustworthy cyberspace during high impact events: an application to Covid-19. . arXiv:2006.01284 [cs.LG]
  14. Branco P, Torgo L, Ribeiro RP. 2016.. A survey of predictive modeling on imbalanced domains. . ACM Comput. Surv. 49:(2):31
    [Google Scholar]
  15. Casillo M, Colace F, Conte D, De Santo M, Lombardi M, et al. 2020.. A multi-feature Bayesian approach for fake news detection. . In Computational Data and Social Networks, ed. S Chellappan, KKR Choo, N Phan , pp. 33344 Cham, Switz:.: Springer
    [Google Scholar]
  16. Chang J, Gerrish S, Wang C, Boyd-Graber JL, Blei DM. 2009.. Reading tea leaves: how humans interpret topic models. . In NIPS'09: Proceedings of the 22nd International Conference on Neural Information Processing Systems, ed. Y Bengio, D Schuurmans, JD Lafferty, CKI Williams, A Culotta , pp. 28896 Red Hook, NY:: Curran
    [Google Scholar]
  17. Chen M, Wang N, Subbalakshmi KP. 2020.. Explainable rumor detection using inter and intra-feature attention networks. . arXiv:2007.11057 [cs.SI]
  18. Cui L, Wang S, Lee D. 2019.. Same: sentiment-aware multi-modal embedding for detecting fake news. . In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 4148 Piscataway, NJ:: IEEE
    [Google Scholar]
  19. Damasceno LP, Cavalcante CC, Adal T, Boukouvalas Z. 2021.. Independent vector analysis using semi-parametric density estimation via multivariate entropy maximization. . In ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 371519 Piscataway, NJ:: IEEE
    [Google Scholar]
  20. Damasceno LP, Shafer A, Japkowicz N, Cavalcante CC, Boukouvalas Z. 2022.. Efficient multivariate data fusion for misinformation detection during high impact events. . In Discovery Science: 25th International Conference, DS 2022, Montpellier, France, October 10–12, 2022, Proceedings, ed. P Pascal, D Ienco , pp. 25368 Cham, Switz.:: Springer
    [Google Scholar]
  21. Draws T, La Barbera D, Soprano M, Roitero K, Ceolin D, et al. 2022.. The effects of crowd worker biases in fact-checking tasks. . In 2022 ACM Conference on Fairness, Accountability, and Transparency, FAccT '22, pp. 211424 New York:: ACM
    [Google Scholar]
  22. D'Ulizia A, Caschera MC, Ferri F, Grifoni P. 2021.. Fake news detection: a survey of evaluation datasets. . PeerJ Comput. Sci. 7::e518
    [Crossref] [Google Scholar]
  23. Fayaz M, Khan A, Bilal M, Khan SU. 2022.. Machine learning for fake news classification with optimal feature selection. . Soft Comput. 26:(16):776371
    [Crossref] [Google Scholar]
  24. Glenski M, Ayton E, Mendoza J, Volkova S. 2019.. Multilingual multimodal digital deception detection and disinformation spread across social platforms. . arXiv:1909.05838 [cs.SI]
  25. Guacho GB, Abdali S, Shah N, Papalexakis EE. 2018.. Semi-supervised content-based detection of misinformation via tensor embeddings. . In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 32225 Piscataway, NJ:: IEEE
    [Google Scholar]
  26. Gupta A, Kumaraguru P. 2012.. Credibility ranking of tweets during high impact events. . In PSOSM '12: Proceedings of the 1st Workshop on Privacy and Security in Online Social Media, artic. 2 . New York:: ACM
    [Google Scholar]
  27. Gupta A, Lamba H, Kumaraguru P, Joshi A. 2013.. Faking Sandy: characterizing and identifying fake images on Twitter during Hurricane Sandy. . In WWW '13 Companion: Proceedings of the 22nd International Conference on World Wide Web, pp. 72936 New York:: ACM
    [Google Scholar]
  28. Han W, Mehta V. 2019.. Fake news detection in social networks using machine learning and deep learning: performance evaluation. . In 2019 IEEE International Conference on Industrial Internet (ICII), pp. 37580 Piscataway, NJ:: IEEE
    [Google Scholar]
  29. Han Y, Karunasekera S, Leckie C. 2020.. Graph neural networks with continual learning for fake news detection from social media. . arXiv:2007.03316 [cs.SI]
  30. Hangloo S, Arora B. 2022.. Combating multimodal fake news on social media: methods, datasets, and future perspective. . Multimedia Syst. 28:(6):2391422
    [Crossref] [Google Scholar]
  31. Hansen LK, Rieger L. 2019.. Interpretability in intelligent systems—a new concept?. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, ed. W Samek, G Montavon, A Vedaldi, LK Hansen, K-R Müller , pp. 4149 Cham, Switz:.: Springer
    [Google Scholar]
  32. Hoang TBN, Mothe J. 2018.. Predicting information diffusion on Twitter—analysis of predictive features. . J. Comput. Sci. 28::25764
    [Crossref] [Google Scholar]
  33. Hori C, Hori T, Lee TY, Zhang Z, Harsham B, et al. 2017.. Attention-based multimodal fusion for video description. . In 2017 IEEE International Conference on Computer Vision (ICCV), pp. 4193202 Piscataway, NJ:: IEEE
    [Google Scholar]
  34. Hosseinimotlagh S, Papalexakis EE. 2018.. Unsupervised content-based identification of fake news articles with tensor decomposition ensembles. Paper presented at Workshop on Misinformation and Misbehavior Mining on the Web (MIS2), Aug. 14, virtual
  35. Islam MR, Liu S, Wang X, Xu G. 2020.. Deep learning for misinformation detection on online social networks: a survey and new perspectives. . Soc. Netw. Anal. Min. 10::82
    [Crossref] [Google Scholar]
  36. Jeong U, Ding K, Cheng L, Guo R, Shu K, Liu H. 2022.. Nothing stands alone: relational fake news detection with hypergraph neural networks. . In 2022 IEEE International Conference on Big Data (Big Data), pp. 596605 Piscataway, NJ:: IEEE
    [Google Scholar]
  37. Jin Z, Cao J, Guo H, Zhang Y, Luo J. 2017.. Multimodal fusion with recurrent neural networks for rumor detection on microblogs. . In Proceedings of the 25th ACM International Conference on Multimedia, pp. 795816 New York:: ACM
    [Google Scholar]
  38. Kaliyar RK, Goswami A, Narang P. 2021.. FakeBERT: fake news detection in social media with a BERT-based deep learning approach. . Multimedia Tools Appl. 80::1176588
    [Crossref] [Google Scholar]
  39. Kaliyar RK, Goswami A, Narang P, Sinha S. 2020.. FNDNet—a deep convolutional neural network for fake news detection. . Cogn. Syst. Res. 61::3244
    [Crossref] [Google Scholar]
  40. Khan JY, Khondaker MTI, Afroz S, Uddin G, Iqbal A. 2021.. A benchmark study of machine learning models for online fake news detection. . Mach. Learn. Appl. 4::100032
    [Google Scholar]
  41. Khattar D, Goud JS, Gupta M, Varma V. 2019.. MVAE: multimodal variational autoencoder for fake news detection. . In WWW '19: The World Wide Web Conference, ed. L Liu, R White , pp. 291521 New York:: ACM
    [Google Scholar]
  42. Kim B, Wattenberg M, Gilmer J, Cai C, Wexler J, et al. 2018.. Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). . Proc. Mach. Learn. Res. 80::266877
    [Google Scholar]
  43. Kirchknopf A, Slijepčević D, Zeppelzauer M. 2021.. Multimodal detection of information disorder from social media. . In 2021 International Conference on Content-Based Multimedia Indexing (CBMI), pp. 20710 Piscataway, NJ:: IEEE
    [Google Scholar]
  44. Kumar S, Singh TD. 2022.. Fake news detection on Hindi news dataset. . Glob. Trans. Proc. 3:(1):28997
    [Crossref] [Google Scholar]
  45. Kumari R, Ekbal A. 2021.. AMFB: attention based multimodal factorized bilinear pooling for multimodal fake news detection. . Expert Syst. Appl. 184::115412
    [Crossref] [Google Scholar]
  46. Leevy J, Khoshgoftaar T, Bauder R, Seliya N. 2018.. A survey on addressing high-class imbalance in big data. . J. Big Data 5::42
    [Crossref] [Google Scholar]
  47. Lim S, Jatowt A, Färber M, Yoshikawa M. 2020.. Annotating and analyzing biased sentences in news articles using crowdsourcing. . In Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 147884 Paris:: Eur. Lang. Resour. Assoc.
    [Google Scholar]
  48. Linardatos P, Papastefanopoulos V, Kotsiantis S. 2021.. Explainable AI: a review of machine learning interpretability methods. . Entropy 23:(1):18
    [Crossref] [Google Scholar]
  49. Lundberg SM, Lee SI. 2017.. A unified approach to interpreting model predictions. . In NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems, ed. U von Luxburg, I Guyon, S Bengio, H Wallach, R Fergus , pp. 476877 Red Hook, NY:: Curran
    [Google Scholar]
  50. Mandical RR, Mamatha N, Shivakumar N, Monica R, Krishna AN. 2020.. Identification of fake news using machine learning. . In 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), pp. 16 Piscataway, NJ:: IEEE
    [Google Scholar]
  51. Mohseni S, Ragan E, Hu X. 2019.. Open issues in combating fake news: interpretability as an opportunity. . arXiv:1904.03016 [cs.SI]
  52. Monti F, Frasca F, Eynard D, Mannion D, Bronstein MM. 2019.. Fake news detection on social media using geometric deep learning. . arXiv:1902.06673 [cs.SI]
  53. Moroney C, Crothers E, Mittal S, Joshi A, Adal T, et al. 2021.. The case for latent variable versus deep learning methods in misinformation detection: An application to COVID-19. . In Discovery Science: 24th International Conference, DS 2021, Halifax, NS, Canada, October 11–13, 2021, Proceedings, pp. 42232 Cham, Switz.:: Springer
    [Google Scholar]
  54. Murayama T. 2021.. Dataset of fake news detection and fact verification: a survey. . arXiv:2111.03299 [cs.LG]
  55. Neumann T, De-Arteaga M, Fazelpour S. 2022.. Justice in misinformation detection systems: an analysis of algorithms, stakeholders, and potential harms. . In FAccT '22: Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, pp. 150415 New York:: ACM
    [Google Scholar]
  56. Nguyen VH, Sugiyama K, Nakov P, Kan MY. 2020.. FANG: leveraging social context for fake news detection using graph representation. . In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, CIKM '20, pp. 116574 New York:: ACM
    [Google Scholar]
  57. Paka WS, Bansal R, Kaushik A, Sengupta S, Chakraborty T. 2021.. Cross-SEAN: a cross-stitch semi-supervised neural attention model for COVID-19 fake news detection. . Appl. Soft Comput. 107::107393
    [Crossref] [Google Scholar]
  58. Park J, Ellezhuthil R, Arunachalam R, Feldman LA, Singh VK. 2022.. Toward fairness in misinformation detection algorithms. . In Workshop Proceedings of the 16th International AAAI Conference on Web and Social Media, ed. C Budak, M Cha, D Quercia . Palo Alto, CA:: AAAI
    [Google Scholar]
  59. Peters J. 2020.. Twitter will remove misleading COVID-19-related tweets that could incite people to engage in ‘harmful activity.’. The Verge, April 22. https://www.theverge.com/2020/4/22/21231956/twitter-remove-covid-19-tweets-call-to-action-harm-5g
    [Google Scholar]
  60. Rath B, Salecha A, Srivastava J. 2020.. Detecting fake news spreaders in social networks using inductive representation learning. . In 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 18289 Piscataway, NJ:: IEEE
    [Google Scholar]
  61. Raza S, Reji DJ, Ding C. 2022.. Dbias: detecting biases and ensuring fairness in news articles. . Int. J. Data Sci. Anal. https://doi.org/10.1007/s41060-022-00359-4
    [Google Scholar]
  62. Ribeiro MT, Singh S, Guestrin C. 2016. Why should I trust you?” Explaining the predictions of any classifier. . In KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 113544 New York:: ACM
    [Google Scholar]
  63. Rohera D, Shethna H, Patel K, Thakker U, Tanwar S, et al. 2022.. A taxonomy of fake news classification techniques: survey and implementation aspects. . IEEE Access 10::3036794
    [Crossref] [Google Scholar]
  64. Sahan M, Smidl V, Marik R. 2021.. Active learning for text classification and fake news detection. . In 2021 International Symposium on Computer Science and Intelligent Controls (ISCSIC), pp. 8794 Piscataway, NJ:: IEEE
    [Google Scholar]
  65. Sharma K, Qian F, Jiang H, Ruchansky N, Zhang M, Liu Y. 2019.. Combating fake news: a survey on identification and mitigation techniques. . ACM Trans. Intell. Syst. Technol. 10:(3):21
    [Crossref] [Google Scholar]
  66. Shu K, Bernard HR, Liu H. 2018.. Studying fake news via network analysis: detection and mitigation. . arXiv:1804.10233 [cs.SI]
  67. Shu K, Sliva A, Wang S, Tang J, Liu H. 2017.. Fake news detection on social media: a data mining perspective. . ACM SIGKDD Explor. Newsl. 19:(1):2236
    [Crossref] [Google Scholar]
  68. Shu K, Wang S, Liu H. 2019.. Beyond news contents: the role of social context for fake news detection. . In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 31220 New York:: ACM
    [Google Scholar]
  69. Singhal S, Shah RR, Chakraborty T, Kumaraguru P, Satoh S. 2019.. SpotFake: a multi-modal framework for fake news detection. . In 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM), pp. 3947 Piscataway, NJ:: IEEE
    [Google Scholar]
  70. Song C, Ning N, Zhang Y, Wu B. 2020.. A multimodal fake news detection model based on crossmodal attention residual and multichannel convolutional neural networks. . Inform. Proc. Manag. 58::102437
    [Crossref] [Google Scholar]
  71. Swartout WR, Moore JD. 1993.. Explanation in second generation expert systems. . In Second Generation Expert Systems, ed. J-M David, J-P Krivine, R Simmons , pp. 54385 Berlin:: Springer
    [Google Scholar]
  72. Tschiatschek S, Singla A, Gomez Rodriguez M, Merchant A, Krause A. 2018.. Fake news detection in social networks via crowd signals. . In WWW '18: Companion Proceedings of the Web Conference 2018, pp. 51724 Geneva:: Int. World Wide Web Conf. Steer. Comm.
    [Google Scholar]
  73. Tuan NMD, Minh PQN. 2021.. Multimodal fusion with BERT and attention mechanism for fake news detection. . In 2021 RIVF International Conference on Computing and Communication Technologies (RIVF), pp. 4348 Piscataway, NJ:: IEEE
    [Google Scholar]
  74. Vosoughi S, Roy D, Aral S. 2018.. The spread of true and false news online. . Science 359:(6380):114651
    [Crossref] [Google Scholar]
  75. Wang J, Mao H, Li H. 2022.. FMFN: fine-grained multimodal fusion networks for fake news detection. . Appl. Sci. 12:(3):1093
    [Crossref] [Google Scholar]
  76. Wang WY. 2017. Liar, liar pants on fire”: a new benchmark dataset for fake news detection. . arXiv:1705.00648 [cs.CL]
  77. Wang Y, Ma F, Jin Z, Yuan Y, Xun G, et al. 2018.. EANN: event adversarial neural networks for multi-modal fake news detection. . In KDD '18: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 84957 New York:: ACM
    [Google Scholar]
  78. Wu L, Li J, Hu X, Liu H. 2017.. Gleaning wisdom from the past: early detection of emerging rumors in social media. . In Proceedings of the 2017 SIAM International Conference on Data Mining (SDM), pp. 99107 Philadelphia, PA:: SIAM
    [Google Scholar]
  79. Wu L, Morstatter F, Carley KM, Liu H. 2019.. Misinformation in social media: definition, manipulation, and detection. . ACM SIGKDD Explor. Newsl. 21:(2):8090
    [Crossref] [Google Scholar]
  80. Yang S, Shu K, Wang S, Gu R, Wu F, Liu H. 2019.. Unsupervised fake news detection on social media: a generative approach. . Proc. AAAI Conf. Artif. Intel. 33::564451
    [Google Scholar]
  81. Zhang Q, Lipani A, Liang S, Yilmaz E. 2019.. Reply-aided detection of misinformation via Bayesian deep learning. . In WWW '19: The World Wide Web Conference, pp. 233343 New York:: ACM
    [Google Scholar]
  82. Zhang T, Wang D, Chen H, Zeng Z, Guo W, et al. 2020.. BDANN: BERT-based domain adaptation neural network for multi-modal fake news detection. . In 2020 International Joint Conference on Neural Networks (IJCNN), pp. 18 Piscataway, NJ:: IEEE
    [Google Scholar]
  83. Zhao J, Xie X, Xu X, Sun S. 2017.. Multi-view learning overview: recent progress and new challenges. . Inform. Fusion 38::4354
    [Crossref] [Google Scholar]
  84. Zhao Z, Resnick P, Mei Q. 2015.. Enquiring minds: early detection of rumors in social media from enquiry posts. . In WWW '15: Proceedings of the 24th International Conference on World Wide Web, pp. 1395405 Geneva:: Int. World Wide Web Conf. Steer. Comm.
    [Google Scholar]
/content/journals/10.1146/annurev-statistics-040622-033806
Loading
/content/journals/10.1146/annurev-statistics-040622-033806
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error