1932

Abstract

Knowledge of causal effects is of great importance to decision makers in a wide variety of settings. In many cases, however, these causal effects are not known to the decision makers and need to be estimated from data. This fundamental problem has been known and studied for many years in many disciplines. In the past thirty years, however, the amount of empirical as well as methodological research in this area has increased dramatically, and so has its scope. It has become more interdisciplinary, and the focus has been more specifically on methods for credibly estimating causal effects in a wide range of both experimental and observational settings. This work has greatly impacted empirical work in the social and biomedical sciences. In this article, I review some of this work and discuss open questions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-033121-114601
2024-04-22
2024-05-11
Loading full text...

Full text loading...

/deliver/fulltext/statistics/11/1/annurev-statistics-033121-114601.html?itemId=/content/journals/10.1146/annurev-statistics-033121-114601&mimeType=html&fmt=ahah

Literature Cited

  1. Abadie A, Angrist J, Imbens G. 2002.. Instrumental variables estimates of the effect of subsidized training on the quantiles of trainee earnings. . Econometrica 70:(1):91117
    [Crossref] [Google Scholar]
  2. Abadie A, Athey S, Imbens G, Wooldridge J. 2020.. Sampling-based versus design-based uncertainty in regression analysis. . Econometrica 88::26596
    [Crossref] [Google Scholar]
  3. Abadie A, Cattaneo M. 2018.. Econometric methods for program evaluation. . Annu. Rev. Econ. 10::465503
    [Crossref] [Google Scholar]
  4. Abadie A, Diamond A, Hainmueller J. 2010.. Synthetic control methods for comparative case studies: estimating the effect of California's tobacco control program. . J. Am. Stat. Assoc. 105:(490):493505
    [Crossref] [Google Scholar]
  5. Abadie A, Gardeazabal J. 2003.. The economic costs of conflict: a case study of the Basque Country. . Am. Econ. Rev. 93::11332
    [Crossref] [Google Scholar]
  6. Abadie A, Imbens G. 2006.. Large sample properties of matching estimators for average treatment effects. . Econometrica 74:(1):23567
    [Crossref] [Google Scholar]
  7. Abadie A, Imbens G. 2011.. Bias-corrected matching estimators for average treatment effects. . J. Bus. Econ. Stat. 29:(1):111
    [Crossref] [Google Scholar]
  8. Abadie A, Imbens G. 2016.. Matching on the estimated propensity score. . Econometrica 84:(2):781807
    [Crossref] [Google Scholar]
  9. Abdulkadıroğlu A, Angrist J, Narita Y, Pathak P. 2022.. Breaking ties: regression discontinuity design meets market design. . Econometrica 90:(1):11751
    [Crossref] [Google Scholar]
  10. Andrews I, Stock J, Sun L. 2019.. Weak instruments in instrumental variables regression: theory and practice. . Annu. Rev. Econ. 11::72753
    [Crossref] [Google Scholar]
  11. Angrist J. 1990.. Lifetime earnings and the Vietnam era draft lottery: evidence from Social Security administrative records. . Am. Econ. Rev. 80:(3):31336
    [Google Scholar]
  12. Angrist J, Imbens G, Rubin D. 1996.. Identification of causal effects using instrumental variables. . J. Am. Stat. Assoc. 91::44472
    [Crossref] [Google Scholar]
  13. Angrist J, Krueger A. 1991.. Does compulsory schooling affect schooling and earnings?. Q. J. Econ. 106:(4):9791014
    [Crossref] [Google Scholar]
  14. Angrist J, Krueger A. 1999.. Empirical strategies in labor economics. . In Handbook of Labor Economics, Vol. 3, ed. OC Ashenfelter, D Card , pp. 1277366. Amsterdam:: Elsevier
    [Google Scholar]
  15. Angrist J, Rokkanen M. 2015.. Wanna get away? Regression discontinuity estimation of exam school effects away from the cutoff. . J. Am. Stat. Assoc. 110:(512):133144
    [Crossref] [Google Scholar]
  16. Arkhangelsky D, Athey S, Hirshberg D, Imbens G, Wager S. 2021.. Synthetic difference-in-differences. . Am. Econ. Rev. 111:(12):4088118
    [Crossref] [Google Scholar]
  17. Armstrong T, Kolesár M. 2018.. Optimal inference in a class of regression models. . Econometrica 86:(2):65583
    [Crossref] [Google Scholar]
  18. Aronow P, Samii C. 2017.. Estimating average causal effects under general interference, with application to a social network experiment. . Ann. Appl. Stat. 11:(4):191247
    [Crossref] [Google Scholar]
  19. Athey S, Bahati M, Doudchenko N, Imbens G, Khosravi K. 2021.. Matrix completion methods for causal panel data models. . J. Am. Stat. Assoc. 116:(536):171630
    [Crossref] [Google Scholar]
  20. Athey S, Chetty R, Imbens G, Kang H. 2020a.. Estimating treatment effects using multiple surrogates: the role of the surrogate score and the surrogate index. . arXiv:1603.09326 [stat.ME]
  21. Athey S, Chetty R, Imbens G. 2020b.. Combining experimental and observational data to estimate treatment effects on long term outcomes. . arXiv:2006.09676 [stat.ME]
  22. Athey S, Eckles D, Imbens GW. 2018a.. Exact p-values for network interference. . J. Am. Stat. Assoc. 113:(521):23040
    [Crossref] [Google Scholar]
  23. Athey S, Imbens G. 2016.. Recursive partitioning for heterogeneous causal effects. . PNAS 113:(27):735360
    [Crossref] [Google Scholar]
  24. Athey S, Imbens G. 2017.. The econometrics of randomized experiments. . In Handbook of Economic Field Experiments, Vol. 1, ed. AV Banerjee, E Duflo , pp. 73140. Amsterdam:: Elsevier
    [Google Scholar]
  25. Athey S, Imbens G. 2021.. Design-based analysis in difference-in-differences settings with staggered adoption. . J. Econom. 226:(1):6279
    [Crossref] [Google Scholar]
  26. Athey S, Imbens G, Wager S. 2018b.. Approximate residual balancing. . J. R. Stat. Soc. Ser. B 80:(4):597623
    [Crossref] [Google Scholar]
  27. Athey S, Wager S. 2021.. Policy learning with observational data. . Econometrica 89:(1):13361
    [Crossref] [Google Scholar]
  28. Bajari P, Burdick B, Imbens G, Masoero L, McQueen J, et al. 2021.. Multiple randomization designs. . arXiv:2112.13495 [stat.ME]
  29. Bajari P, Burdick B, Imbens G, Masoero L, McQueen J, et al. 2023.. Experimental design in marketplaces. . Stat. Sci. 38:(3):45876
    [Crossref] [Google Scholar]
  30. Banerjee A. 2020.. Field experiments and the practice of economics. . Am. Econ. Rev. 110:(7):193751
    [Crossref] [Google Scholar]
  31. Baron R, Kenny D. 1986.. The moderator–mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. . J. Pers. Soc. Psychol. 51:(6):117382
    [Crossref] [Google Scholar]
  32. Basse GW, Feller A, Toulis P. 2019.. Randomization tests of causal effects under interference. . Biometrika 106:(2):48794
    [Crossref] [Google Scholar]
  33. Bertanha M, Imbens G. 2020.. External validity in fuzzy regression discontinuity designs. . J. Bus. Econ. Stat. 38:(3):593612
    [Crossref] [Google Scholar]
  34. Besbes O, Gur Y, Zeevi A. 2014.. Stochastic multi-armed-bandit problem with non-stationary rewards. . In NIPS'14: Proceedings of the 27th International Conference on Neural Information Processing Systems, ed. Z Ghahramani, M Welling, C Cortes, ND Lawrence, KQ Weinberger , pp. 199207. Cambridge, MA:: MIT Press
    [Google Scholar]
  35. Bickel P, Klaassen C, Ritov Y, Wellner J. 1993.. Efficient and Adaptive Estimation for Semiparametric Models. Baltimore, MD:: Johns Hopkins Univ. Press
  36. Brodersen K, Gallusser F, Koehler J, Remy N, Scott S. 2015.. Inferring causal impact using Bayesian structural time-series models. . Ann. Appl. Stat. 9:(1):24774
    [Crossref] [Google Scholar]
  37. Black S. 1999.. Do better schools matter? Parental valuation of elementary education. . Q. J. Econ. 114:(2):57799
    [Crossref] [Google Scholar]
  38. Bond RM, Fariss CJ, Jones JJ, Kramer ADI, Marlow C, et al. 2012.. A 61-million-person experiment in social influence and political mobilization. . Nature 489:(7415):29598
    [Crossref] [Google Scholar]
  39. Callaway B, Sant'Anna P. 2020.. Difference-in-differences with multiple time periods. . J. Econom. 225:(2):20030
    [Crossref] [Google Scholar]
  40. Calonico S, Cattaneo M, Titiunik R. 2014.. Robust nonparametric confidence intervals for regression-discontinuity designs. . Econometrica 82:(6):2295326
    [Crossref] [Google Scholar]
  41. Chamberlain G. 1984.. Panel data. . In Handbook of Econometrics, Vol. 2, ed. Z Griliches, MD Intriligator , pp. 1247318. Amsterdam:: Elsevier
    [Google Scholar]
  42. Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C, Newey W. 2017.. Double/debiased/Neyman machine learning of treatment effects. . Am. Econ. Rev. 7:(5):26165
    [Crossref] [Google Scholar]
  43. Chernozhukov V, Cinelli C, Newey W, Sharma A, Syrgkanis V. 2022.. Long story short: omitted variable bias in causal machine learning. . arXiv:2112.13398 [econ.EM]
  44. Chernozhukov V, Demirer M, Duflo E, Fernandez-Val I. 2018.. Generic machine learning inference on heterogeneous treatment effects in randomized experiments, with an application to immunization in India. NBER Work. Pap. 24678
  45. Chernozhukov V, Hansen C. 2005.. An IV model of quantile treatment effects. . Econometrica 73:(1):24561
    [Crossref] [Google Scholar]
  46. Chernozhukov V, Wüthrich K, Zhu Y. 2021.. An exact and robust conformal inference method for counterfactual and synthetic controls. . J. Am. Stat. Assoc. 116:(536):184964
    [Crossref] [Google Scholar]
  47. Cinelli C, Forney A, Pearl J. 2022.. A crash course in good and bad controls. . Sociol. Methods Res. In press. https://doi.org/10.1177/00491241221099552
    [Crossref] [Google Scholar]
  48. Cinelli C, Hazlett C. 2020.. Making sense of sensitivity: extending omitted variable bias. . J. R. Stat. Soc. Ser. B 82:(1):3967
    [Crossref] [Google Scholar]
  49. Cook T. 2008.. Waiting for life to arrive: a history of the regression-discontinuity design in psychology, statistics and economics. . J. Econom. 142:(2):63654
    [Crossref] [Google Scholar]
  50. Crépon B, Duflo E, Gurgand M, Rathelot R, Zamora P. 2013.. Do labor market policies have displacement effects? Evidence from a clustered randomized experiment. . Q. J. Econ. 128:(2):53180
    [Crossref] [Google Scholar]
  51. Crump RK, Hotz VJ, Imbens GW, Mitnik OA. 2008.. Nonparametric tests for treatment effect heterogeneity. . Rev. Econ. Stat. 90:(3):389405
    [Crossref] [Google Scholar]
  52. Crump RK, Hotz VJ, Imbens GW, Mitnik OA. 2009.. Dealing with limited overlap in estimation of average treatment effects. . Biometrika 96:(1):18799
    [Crossref] [Google Scholar]
  53. Cunningham S. 2018.. Causal Inference: The Mixtape. New Haven, CT:: Yale Univ. Press
  54. Currie J, Kleven H, Zwiers E. 2020.. Technology and big data are changing economics: mining text to track methods. . AEA Pap. Proc. 110::4248
    [Crossref] [Google Scholar]
  55. de Chaisemartin C, d'Haultfœuille X. 2020.. Two-way fixed effects estimators with heterogeneous treatment effects. . Am. Econ. Rev. 110:(9):296496
    [Crossref] [Google Scholar]
  56. Dehejia R. 2005.. Program evaluation as a decision problem. . J. Econom. 125:(1):14173
    [Crossref] [Google Scholar]
  57. Dimakopoulou M, Zhou Z, Athey S, Imbens G. 2018.. Estimation considerations in contextual bandits. . arXiv:1711.07077 [stat.ML]
  58. Doudchenko N, Imbens G. 2016.. Balancing, regression, difference-in-differences and synthetic control methods: a synthesis. NBER Work. Pap. 22791
  59. Duflo E. 2020.. Field experiments and the practice of policy. . Am. Econ. Rev. 110:(7):195273
    [Crossref] [Google Scholar]
  60. Ferman B, Pinto C. 2021.. Synthetic controls with imperfect pre-treatment fit. . arXiv:1911.08521 [econ.EM]
  61. Firpo S. 2007.. Efficient semiparametric estimation of quantile treatment effects. . Econometrica 75:(1):25976
    [Crossref] [Google Scholar]
  62. Fisher R. 1937.. The Design of Experiments. London:: Oliver and Boyd
  63. Freyaldenhoven S, Hansen C, Shapiro J. 2019.. Pre-event trends in the panel event-study design. . Am. Econ. Rev. 109:(9):330738
    [Crossref] [Google Scholar]
  64. Gelman A, Imbens G. 2018.. Why high-order polynomials should not be used in regression discontinuity designs. . J. Bus. Econ. Stat. 37:(3):44756
    [Crossref] [Google Scholar]
  65. Goodman-Bacon A. 2021.. Difference-in-differences with variation in treatment timing. . J. Econom. 225:(2):25477
    [Crossref] [Google Scholar]
  66. Gupta S, Kohavi R, Tang D, Xu Y, Andersen R, et al. 2019.. Top challenges from the first Practical Online Controlled Experiments Summit. . ACM SIGKDD Explor. Newsl. 21:(1)
    [Crossref] [Google Scholar]
  67. Haavelmo T. 1943.. The statistical implications of a system of simultaneous equations. . Econometrica 11:(1):112
    [Crossref] [Google Scholar]
  68. Hahn J. 1998.. On the role of the propensity score in efficient semiparametric estimation of average treatment effects. . Econometrica 66:(2):31531
    [Crossref] [Google Scholar]
  69. Hahn J, Todd P, Van der Klaauw W. 2001.. Identification and estimation of treatment effects with a regression-discontinuity design. . Econometrica 69:(1):2019
    [Crossref] [Google Scholar]
  70. Han S. 2021.. Identification in nonparametric models for dynamic treatment effects. . J. Econom. 225:(2):13247
    [Crossref] [Google Scholar]
  71. Harrison G, List J. 2004.. Field experiments. . J. Econ. Lit. 42:(4):100955
    [Crossref] [Google Scholar]
  72. Heckman J. 1990.. Varieties of selection bias. . Am. Econ. Rev. 80:(2):31318
    [Google Scholar]
  73. Hirano K, Imbens G, Ridder G. 2003.. Efficient estimation of average treatment effects using the estimated propensity score. . Econometrica 71:(4):116189
    [Crossref] [Google Scholar]
  74. Hirano K, Porter J. 2009.. Asymptotics for statistical treatment rules. . Econometrica 77:(5):1683701
    [Crossref] [Google Scholar]
  75. Holland P. 1986.. Statistics and causal inference. . J. Am. Stat. Assoc. 81:(396):94560
    [Crossref] [Google Scholar]
  76. Horvitz D, Thompson D. 1952.. A generalization of sampling without replacement from a finite universe. . J. Am. Stat. Assoc. 47:(260):66385
    [Crossref] [Google Scholar]
  77. Hotz V, Imbens G, Klerman J. 2006.. Evaluating the differential effects of alternative welfare-to-work training components: a reanalysis of the California GAIN program. . J. Labor Econ. 24:(3):52166
    [Crossref] [Google Scholar]
  78. Hudgens M, Halloran M. 2008.. Toward causal inference with interference. . J. Am. Stat. Assoc. 103:(482):83242
    [Crossref] [Google Scholar]
  79. Huntington-Klein N. 2021.. The Effect: An Introduction to Research Design and Causality. Boca Raton, FL:: CRC
  80. Imai K, Kim I. 2019.. When should we use unit fixed effects regression models for causal inference with longitudinal data?. Am. J. Political Sci. 63:(2):46790
    [Crossref] [Google Scholar]
  81. Imbens G. 2000.. The role of the propensity score in estimating dose–response functions. . Biometrika 87:(3):70610
    [Crossref] [Google Scholar]
  82. Imbens G. 2003.. Sensitivity to exogeneity assumptions in program evaluation. . Am. Econ. Rev. Pap. Proc. 93:(2):12632
    [Crossref] [Google Scholar]
  83. Imbens G. 2004.. Nonparametric estimation of average treatment effects under exogeneity: a review. . Rev. Econ. Stat. 86:(1):429
    [Crossref] [Google Scholar]
  84. Imbens G. 2014.. Instrumental variables: an econometrician's perspective. . Stat. Sci. (3):32358
    [Google Scholar]
  85. Imbens G. 2015.. Matching methods in practice: three examples. . J. Hum. Resourc. 50:(2):373419
    [Crossref] [Google Scholar]
  86. Imbens G, Angrist J. 1994.. Identification and estimation of local average treatment effects. . Econometrica 61::46776
    [Crossref] [Google Scholar]
  87. Imbens G, Kalyanaraman K. 2012.. Optimal bandwidth choice for the regression discontinuity estimator. . Rev. Econ. Stud. 79:(3):93359
    [Crossref] [Google Scholar]
  88. Imbens G, Rubin D. 2015.. Causal Inference in Statistics, Social, and Biomedical Sciences. Cambridge, UK:: Cambridge Univ. Press
  89. Imbens G, Wager S. 2018.. Optimized regression discontinuity designs. . Rev. Econ. Stat. 101:(2):26478
    [Crossref] [Google Scholar]
  90. Imbens G, Wooldridge J. 2009.. Recent developments in the econometrics of program evaluation. . J. Econ. Lit. 47:(1):586
    [Crossref] [Google Scholar]
  91. Johari R, Li H, Liskovich I, Weintraub G. 2022.. Experimental design in two-sided platforms: an analysis of bias. . Manag. Sci. 68:(10):706989
    [Crossref] [Google Scholar]
  92. Kalla J, Broockman D. 2018.. The minimal persuasive effects of campaign contact in general elections: evidence from 49 field experiments. . Am. Political Sci. Rev. 112:(1):14866
    [Crossref] [Google Scholar]
  93. Keele L. 2015.. The statistics of causal inference: a view from political methodology. . Political Anal. 23:(3):31335
    [Crossref] [Google Scholar]
  94. Kitagawa T, Tetenov A. 2018.. Who should be treated? Empirical welfare maximization methods for treatment choice. . Econometrica 86:(2):591616
    [Crossref] [Google Scholar]
  95. Kremer M. 2020.. Experimentation, innovation, and economics. . Am. Econ. Rev. 110:(7):197494
    [Crossref] [Google Scholar]
  96. Lai T, Robbins H. 1985.. Asymptotically efficient adaptive allocation rules. . Adv. Appl. Math. 6:(1):422
    [Crossref] [Google Scholar]
  97. LaLonde RJ. 1986.. Evaluating the econometric evaluations of training programs with experimental data. . Am. Econ. Rev. 76:(4):60420
    [Google Scholar]
  98. Lattimore T, Szepesvári C. 2020.. Bandit Algorithms. Cambridge, UK:: Cambridge Univ. Press
  99. Lee D, Moretti E, Butler M. 2004.. Do voters affect or elect policies? Evidence from the US House. . Q. J. Econ. 119:(3):80759
    [Crossref] [Google Scholar]
  100. Li F, Morgan K, Zaslavsky A. 2018.. Balancing covariates via propensity score weighting. . J. Am. Stat. Assoc. 113:(521):390400
    [Crossref] [Google Scholar]
  101. Lin W. 2013.. Agnostic notes on regression adjustments to experimental data: reexamining Freedman's critique. . Ann. Appl. Stat. 7:(1):295318
    [Crossref] [Google Scholar]
  102. Lin Z, Ding P, Han F. 2021.. Estimation based on nearest neighbor matching: from density ratio to average treatment effect. . arXiv:2112.13506 [math.ST]
  103. Liu L, Wang Y, Xu Y. 2022.. A practical guide to counterfactual estimators for causal inference with time-series cross-sectional data. . Am. J. Political Sci. In press
    [Google Scholar]
  104. Liu Y, Van Roy B, Xu K. 2023.. A definition of non-stationary bandits. . arXiv:2302.12202 [cs.LG]
  105. Manski CF. 1990.. Nonparametric bounds on treatment effects. . Am. Econ. Rev. 80:(2):31923
    [Google Scholar]
  106. Manski CF. 2003.. Partial Identification of Probability Distributions. New York:: Springer
  107. Manski CF. 2004.. Statistical treatment rules for heterogeneous populations. . Econometrica 72:(4):122146
    [Crossref] [Google Scholar]
  108. Masten M, Poirier A, Zhang L. 2020.. Assessing sensitivity to unconfoundedness: estimation and inference. . arXiv:2012.15716 [econ.EM]
  109. Matsudaira J. 2008.. Mandatory summer school and student achievement. . J. Econom. 142:(2):82950
    [Crossref] [Google Scholar]
  110. Matzkin R. 1994.. Restrictions of economic theory in nonparametric methods. . In Handbook of Econometrics, Vol. 4, ed. RF Engle, DL McFadden , pp. 252358. Amsterdam:: Elsevier
    [Google Scholar]
  111. McCrary J. 2008.. Testing for manipulation of the running variable in the regression discontinuity design. . J. Econom. 142:(2):698714
    [Crossref] [Google Scholar]
  112. Morgan S, Winship C. 2015.. Counterfactuals and Causal Inference. Cambridge, UK:: Cambridge Univ. Press
  113. Newey W. 1990.. Semiparametric efficiency bounds. . J. Appl. Econom. 5:(2):99135
    [Crossref] [Google Scholar]
  114. Oster E. 2019.. Unobservable selection and coefficient stability: theory and evidence. . J. Bus. Econ. Stat. 37:(2):187204
    [Crossref] [Google Scholar]
  115. Pearl J. 1995.. Causal diagrams for empirical research. . Biometrika 82:(4):66988
    [Crossref] [Google Scholar]
  116. Pearl J. 2000.. Causality: Models, Reasoning, and Inference. Cambridge, UK:: Cambridge Univ. Press
  117. Pearl J, Mackenzie D. 2018.. The Book of Why: The New Science of Cause and Effect. New York:: Basic Books
  118. Peters J, Janzing D, Schölkopf B. 2017.. Elements of Causal Inference: Foundations and Learning Algorithms. Cambridge, MA:: MIT Press
  119. Porter J. 2003.. Estimation in the regression discontinuity model. Work. Pap. , Dep. Econ., Harvard Univ., Cambridge, MA:. https://users.ssc.wisc.edu/∼jrporter/reg_discont_2003.pdf
  120. Pouget-Abadie J, Aydin K, Schudy W, Brodersen K, Mirrokni V. 2019.. Variance reduction in bipartite experiments through correlation clustering. . In NIPS'19: Proceedings of the 33rd International Conference on Neural Information Processing Systems, ed. H Wallach, H Larochelle, A Beygelzimer, F d'Alché-Buc, E Fox, R Garnett , pp. 1330919. Red Hook, NY:: Curran
    [Google Scholar]
  121. Prentice R. 1989.. Surrogate endpoints in clinical trials: definition and operational criteria. . Stat. Med. 8:(4):43140
    [Crossref] [Google Scholar]
  122. Robins J. 1989.. The analysis of randomized and non-randomized AIDS treatment trials using a new approach to causal inference in longitudinal studies. . In Health Service Research Methodology: A Focus on AIDS, pp. 11359. Washington, DC:: US Public Health Serv.
    [Google Scholar]
  123. Robins J. 1997.. Causal inference from complex longitudinal data. . In Latent Variable Modeling and Applications to Causality, ed. M Berkane , pp. 69117. New York:: Springer
    [Google Scholar]
  124. Robins J, Hernán MA, Brumback B. 2000.. Marginal structural models and causal inference in epidemiology. . Epidemiology 11:(5):55060
    [Crossref] [Google Scholar]
  125. Robins J, Rotnitzky A, Zhao L. 1994.. Estimation of regression coefficients when some regressors are not always observed. . J. Am. Stat. Assoc. 89:(427):84666
    [Crossref] [Google Scholar]
  126. Robins PK. 1985.. A comparison of the labor supply findings from the four negative income tax experiments. . J. Hum. Resourc. 20:(4):56782
    [Crossref] [Google Scholar]
  127. Rosenbaum PR. 1984.. The consequences of adjustment for a concomitant variable that has been affected by the treatment. . J. R. Stat. Soc. Ser. A 147:(5):65666
    [Crossref] [Google Scholar]
  128. Rosenbaum PR. 2002.. Observational Studies. New York:: Springer
  129. Rosenbaum PR. 2010.. Design of Observational Studies. New York:: Springer
  130. Rosenbaum PR. 2020.. Modern algorithms for matching in observational studies. . Annu. Rev. Stat. Appl. 7::14376
    [Crossref] [Google Scholar]
  131. Rosenbaum PR, Rubin DB. 1983a.. Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. . J. R. Stat. Soc. Ser. B 45:(2):21218
    [Crossref] [Google Scholar]
  132. Rosenbaum PR, Rubin DB. 1983b.. The central role of the propensity score in observational studies for causal effects. . Biometrika 70:(1):4155
    [Crossref] [Google Scholar]
  133. Roth J, Sant'Anna PHC, Bilinski A, Poe J. 2022.. What's trending in difference-in-differences?. A synthesis of the recent econometrics literature. arXiv:2201.01194 [econ.EM]
    [Google Scholar]
  134. Rubin DB. 1977.. Assignment to treatment group on the basis of a covariate. . J. Educ. Stat. 2:(1):126
    [Crossref] [Google Scholar]
  135. Rubin DB. 1978.. Bayesian inference for causal effects: the role of randomization. . Ann. Stat. 6:(1):3458
    [Crossref] [Google Scholar]
  136. Rubin DB. 2006.. Matched Sampling for Causal Effects. Cambridge, UK:: Cambridge Univ. Press
  137. Rubin DB. 2008.. For objective causal inference, design trumps analysis. . Ann. Appl. Stat. 2:(3):80840
    [Crossref] [Google Scholar]
  138. Russo D, Van Roy B, Kazerouni A, Osband I, Wen Z. 2018.. A Tutorial on Thompson Sampling. Boston:: Now
  139. Sant'Anna P, Zhao J. 2020.. Doubly robust difference-in-differences estimators. . J. Econom. 219:(1):10122
    [Crossref] [Google Scholar]
  140. Scott S. 2010.. A modern Bayesian look at the multi-armed bandit. . Appl. Stoch. Models Bus. Industry 26:(6):63958
    [Crossref] [Google Scholar]
  141. Splawa-Neyman J. 1990 (1923).. On the application of probability theory to agricultural experiments. Essay on principles. Section 9, transl. D Dabrowska, T Speed.. Stat. Sci. 5:(4):46572
    [Crossref] [Google Scholar]
  142. Staiger D, Stock J. 1997.. Instrumental variables regression with weak instruments. . Econometrica 65:(3):55786
    [Crossref] [Google Scholar]
  143. Stuart E. 2010.. Matching methods for causal inference: a review and a look forward. . Stat. Sci. 25:(1):121
    [Crossref] [Google Scholar]
  144. Sun L, Abraham S. 2021.. Estimating dynamic treatment effects in event studies with heterogeneous treatment effects. . J. Econom. 225:(2):17599
    [Crossref] [Google Scholar]
  145. Thistlewaite D, Campbell D. 1960.. Regression-discontinuity analysis: an alternative to the ex-post facto experiment. . J. Educ. Psychol. 51:(2):30917
    [Crossref] [Google Scholar]
  146. Thompson W. 1933.. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. . Biometrika 25:(3–4):28594
    [Crossref] [Google Scholar]
  147. Tinbergen J. 1930.. Determination and interpretation of supply curves: an example. . Z. Nationalokonomie 1:(5):66979
    [Crossref] [Google Scholar]
  148. Van Der Klaauw W. 2002.. Estimating the effect of financial aid offers on college enrollment: a regression-discontinuity approach. . Int. Econ. Rev. 43:(2):124987
    [Crossref] [Google Scholar]
  149. Van der Laan M, Rose S. 2011.. Targeted Learning: Causal Inference for Observational and Experimental Data. New York:: Springer
  150. VanderWeele TJ. 2015.. Explanation in Causal Inference: Methods for Mediation and Interaction. Oxford, UK:: Oxford University Press
  151. Wager S, Athey S. 2018.. Estimation and inference of heterogeneous treatment effects using random forests. . J. Am. Stat. Assoc. 113.523:(2018):122842
    [Crossref] [Google Scholar]
  152. Wright S. 1934.. The method of path coefficients. . Ann. Math. Stat. 5:(3):161215
    [Crossref] [Google Scholar]
  153. Xu Y. 2017.. Generalized synthetic control method: causal inference with interactive fixed effects models. . Political Anal. 25:(1):5776
    [Crossref] [Google Scholar]
  154. Zigler C, Papadogeorgou G. 2021.. Bipartite causal inference with interference. . Stat. Sci. 36:(1):10923
    [Crossref] [Google Scholar]
  155. Zubizarreta J, Stuart E, Small D, Rosenbaum P. 2023.. Handbook of Matching and Weighting Adjustments for Causal Inference. Boca Raton, FL:: CRC
/content/journals/10.1146/annurev-statistics-033121-114601
Loading
/content/journals/10.1146/annurev-statistics-033121-114601
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error